

Registration Services Report

Policy implementations - 2006-05

- /24 minimum assignment size for IPv4 PI
- Implementation
 - Documentation updates
 - Registration Services procedures
 - Training materials
- Accepted: October 20, 2011
- Implemented: October 26, 2011

Policy implementation - 2010-06

- Created a new status in the RIPE DB for IPv6 assignments:
 - -AGGREGATED-BY-LIR
- Makes it easier to register address pools...
- ... and makes it easier to verify LIR assignments
- Implementation:
 - RIPE DB changes
 - Registration Services procedures and software

Policy implementations - 2007-01

- Contractual requirements for direct assignments
- Accepted October 5, 2008
- Implementation... is different...
 - New assignments
 - Documentation
 - Legal documents
 - RS Procedures
 - Existing assignments
 - More than 30k assignments...

Rough edges of current policies

- Actually...
- They're not that rough anymore

IPv6 Reservations

- IANA procedures for IPv6 additional allocations, beyond the existing /12s
- IANA IPv6 Policy:
 - AVAILABLE SPACE = CURRENTLY FREE ADDRESSES + **RESERVATIONS EXPIRING DURING THE FOLLOWING 3 MONTHS** -FRAGMENTED SPACE
 - IANA will allow for the RIRs to apply their own respective chosen allocation and reservation strategies

IPv6 Reservations

- RIPE NCC allocates using binary-chop for /32s
- Simple reservations for > /32 allocations
- All allocations exist in a three bits reservation
 - -/32 allocation ->/29 reservation
 - -/31 allocation ->/28 reservation

_				
	÷	•	•	

IPv6 Reservations

- RIPE NCC's intention:
 - Keep doing this
 - Evaluate this practice, and the reservations, in *three* years time

Run out fairly analysis

- Not all policy proposals have results that are easily visible in statistics
- Run out fairly should be very visible
- Is it?

Run out fairly analysis

- Not simple numbers to get:
 - Mergers move allocations around
 - Allocations can last shorter or longer than the allocation period
 - Minimum-size allocations can last much longer (/21s)
 - Reality trumps growth predictions anyway
- The *absolute* numbers are thus somewhat inaccurate
- The *relative* numbers should tell a story though

Run out fairly analysis

• IPv4 allocation periods:

	January 2010	12 months	
	July 2010	9 months	
	January 2011	6 months	
	July 2011	3 months	
Alex Le Heux, RIPE	63, Vienna		

This graph shows on the x-axis the allocation date and on the y-axis the percentage of allocations made on that date that have not yet been followed by another allocation. As more than 1/3 of all allocations are the minimum size and around 1/2 of all LIRs have only a single allocation, a large percentage of all allocations ever made have never been followed by an additional allocation request.

Run out fairly analysis - conclusions

- Definitely visible in the statistics
 - More allocations
 - More smaller allocations
 - Exactly as expected
- The bulk of address space still goes to large allocations though
- /21 allocations produce about as much work as all other sizes combined

